DeepMind izumil nov algoritem za množenje matrik, človek ga je hitro izboljšal
Slo-Tech - Umetna inteligenca, ki jo razvija DeepMind, je iznašla nov, hitrejši način za množenje matrik. Njihov program AlphaTensor iz družine Alpha je s tem popravil 50 let stari algoritem, nato pa sta ga teden dni pozneje nepričakovano prekosila avstrijska matematika z Univerze v Linzu.
Množenje matrik je izjemno pomembna računska operacija v računalništvu, ki se ponavlja pri obdelavi in izrisu slik, stiskanju, prepoznavanju govora in slik in drugod. Najučinkovitejši pri množenju matrik so grafični procesorji, ki lahko nalogo razkosajo na manjše podnaloge, nato pa se vzporedno ukvarjajo z njimi. Naivno množenje matrik, kot se ga učimo v šoli, terja množenje vsake vrstice z vsakim stolpcem, kar za matriki dimenzij n x n terja n3 operacij množenja. A s premislekom gre tudi hitreje. Nemški matematik Volker Strassen je že leta 1969 odkril algoritem, ki na primer za množenje matrik 2 x 2 namesto osmih potrebuje sedem operacij množenja, za matriki 4 x 4 pa namesto 64 le 49. Njegova zahtevnost...
Množenje matrik je izjemno pomembna računska operacija v računalništvu, ki se ponavlja pri obdelavi in izrisu slik, stiskanju, prepoznavanju govora in slik in drugod. Najučinkovitejši pri množenju matrik so grafični procesorji, ki lahko nalogo razkosajo na manjše podnaloge, nato pa se vzporedno ukvarjajo z njimi. Naivno množenje matrik, kot se ga učimo v šoli, terja množenje vsake vrstice z vsakim stolpcem, kar za matriki dimenzij n x n terja n3 operacij množenja. A s premislekom gre tudi hitreje. Nemški matematik Volker Strassen je že leta 1969 odkril algoritem, ki na primer za množenje matrik 2 x 2 namesto osmih potrebuje sedem operacij množenja, za matriki 4 x 4 pa namesto 64 le 49. Njegova zahtevnost...