Še bliže dokazu domneve o praštevilskih dvojčkih
James Maynard je avtor dokaza z najnižjo zgornjo mejo.
vir: Wired BlogJames Maynard je avtor dokaza z najnižjo zgornjo mejo.
vir: Wired BlogDa je praštevil, tj. števil, ki imajo zgolj dva pozitivna cela delitelja - sebe in ena, neskončno mnogo, je že pred več kot dva tisoč leti dokazal Evklid in za njim še mnogo matematikov. Zgodba o praštevilih pa se s tem še ne konča, saj matematiki poleg tega, da iščejo čim večja praštevila, poskušajo dokazati tudi nekaj zanimivih domnev.
Zanimiva podmnožica praštevil so Mersennova praštevila, ki jih lahko zapišemo kot 2p - 1, pri čemer je p tudi praštevilo. Z njihovim iskanjem se ukvarja projekt GIMPS, ki deluje na načelih distributiranega računanja (podobno kot SETI in Folding). Pred dobrima dvema tednoma je Josh Findley odkril enainštiridesto Mersennovo praštevilo 224 036 583 - 1, ki z 7.235.733 znaki v desetiškem zapisu velja za največje praštevilo. Ta petek so uradno potrdili, da gre resnično za praštevilo. Klik!
Še bolj zanimive kot iskanje praštevil pa so domneve o njih. Goldbach je leta 1742 v pismu Eulerju postavil domnevo, da lahko vsako naravno število večje od pet...
Na spletni strani Mersenne.org, kjer se ukvarjajo z iskanjem Mersennovih praštevil na podoben način, kot delujeta SETI in Folding, so sporočili, da so včeraj zelo verjetno odkrili štirideseto t.i. Mersennovo praštevilo. Mersennova praštevila so podmnožica praštevil, ki se lahko vsa zapišejo v obliki 2n - 1.
Pred natanko dvema letoma so odkrili devetintrideseto Mersennovo praštevilo (213.466.917 - 1), po tem pa vse do zdaj nobenega, kar priča o redkosti teh števil in računski zahtevnosti postopka njihovega iskanja. Če je bilo štirideseto Mersennovo praštevilo res odkrito in katero je, bo znano v sredini decembra, ko bodo znani rezultati zadnjih testov. Če bodo testi potrdili domnevo, bo to največje znano praštevilo. Več o tovrstnih praštevilih pa si lahko preberete tudi v forumu, kjer se je prav o Mersennovih praštevilih pred dvema letoma razpisal kdo drug kot Thomas. [:D]