»

Še bliže dokazu domneve o praštevilskih dvojčkih

James Maynard je avtor dokaza z najnižjo zgornjo mejo.

vir: Wired Blog
Wired Blog - Maja smo pisali o uspehu neznanega matematika Yitanga Zhanga, ki je delal kot predavatelj na Univerzi v New Hampshiru. Predavatelj (lecturer) ni nič kaj ugledna ali dobro plačana funkcija na ameriških univerzah, zato ni presenetljivo, da za Zhanga tudi v dobro poučenih matematičnih krogih do letos ni slišal nihče. Toda njegov dokaz, da obstoji neskončno mnogo praštevil, ki so razlikujejo največ za 70 milijonov, ga je postavil na matematični zemljevid svet. Univerza v New Hampshiru mu je takoj...

16 komentarjev

Dokazana šibka Goldbachova domneva!

Slo-Tech - Prejšnji teden je bil nadpovprečno pester v svetu analitične teorije števil. Najprej smo dobili prvo zgornjo mejo pri iskanju dokaza o obstoju neskončno mnogo praštevilskih dvojčkov, sedaj pa še bistveno pomembnejši rezultat. Perujski matematik Harald Helfgott je namreč objavil dopolnitev svojega članka, s čimer je - najverjetneje - dokazal šibko Goldbachovo domnevo (uradno preverjanje dokaza še čaka, a na prvi pogled v njem ni nedoslednosti ali napak).

Torej, Goldbachova domneva je eden izmed najbolj elegantnih, najstarejših in očitno tudi najtežjih matematičnih problemov....

81 komentarjev

Napredek pri dokazovanju domneve o praštevilskih dvojčkih

Yitang Zhang

Nature - Ena izmed najbolj znanih domnev o praštevilih se dotika praštevilskih dvojčkov. Že Evklid je namreč elegantno dokazal, da je praštevil neskončno mnogo, precej manj pa vemo o njihovi porazdelitvi. Evklid si je bojda prvi zastavil vprašanje, ali je praštevilskih dvojčkov neskončno mnogo. Do danes še nikomur ni uspelo dokazati, da je dejansko neskončno mnogo praštevil, ki se razlikujejo le za dve, čeprav se to zdi zelo verjetno. Precej blizu dokazu smo bili leta 2005, ko so Goldston in sodelavci skorajda dokazali, da obstoji neskončno mnogo praštevil, ki se razlikujejo za največ 16. Toda v dokazu je lema, ki je še nihče ni dokazal, zato tudi dokaz seveda ni...

73 komentarjev

Odkrili novo največje praštevilo

Marin Mersenne, 1588-1648

Slo-Tech - Fantje pri GIMPS (Great Internet Mersenne Prime Search), ki neprekinjeno teče že od leta 1996, so odkrili novo največje praštevilo na svetu. Te dni so namreč potrdili, da je 25. januarja odkrito število 257.885.161-1, ki ga je odkril Curtis Cooper, v resnici praštevilo. Če bi to število izpisali v desetiškem sestavu, bi porabili 17.425.170 mest.

Da je praštevil neskončno mnogo, je pokazal že Evklid, zato je vedno aktualno iskanje največjega znanega praštevila. S tem izrazom označujemo vsa števila,...

10 komentarjev

Predstavljen poizkus dokaza P = NP

Slo-Tech - Ruski matematik Vladimir Romanov je naslednji v vrsti znanstvenikov, ki predstavljajo svoj poizkus dokaza milenijskega matematičnega problema, ali je P enako NP. Lani je k temu resno pristopil Vinay Deolalikar, a je bil njegov poizkus neuspešen. Problem P = NP vprašuje, ali lahko vsak problem z v polinomskem času preverljivo rešitvijo enako hitro tudi rešimo. Zdi se, da to ne drži, a v matematiki slutnje in domneve bolj malo štejejo.

Romanov je objavil članek z naslovom Non-Orthodox Combinatorial Models Based on Discordant Structures, v katerem predstavlja algoritem za rešitev problema 3-sat v polinomskem času. Ker je 3-sat NP-poln problem, bi bil to že dokaz, da velja P = NP. V...

13 komentarjev

O praštevilih

več strani -

Da je praštevil, tj. števil, ki imajo zgolj dva pozitivna cela delitelja - sebe in ena, neskončno mnogo, je že pred več kot dva tisoč leti dokazal Evklid in za njim še mnogo matematikov. Zgodba o praštevilih pa se s tem še ne konča, saj matematiki poleg tega, da iščejo čim večja praštevila, poskušajo dokazati tudi nekaj zanimivih domnev.

Zanimiva podmnožica praštevil so Mersennova praštevila, ki jih lahko zapišemo kot 2p - 1, pri čemer je p tudi praštevilo. Z njihovim iskanjem se ukvarja projekt GIMPS, ki deluje na načelih distributiranega računanja (podobno kot SETI in Folding). Pred dobrima dvema tednoma je Josh Findley odkril enainštiridesto Mersennovo praštevilo 224 036 583 - 1, ki z 7.235.733 znaki v desetiškem zapisu velja za največje praštevilo. Ta petek so uradno potrdili, da gre resnično za praštevilo. Klik!

Še bolj zanimive kot iskanje praštevil pa so domneve o njih. Goldbach je leta 1742 v pismu Eulerju postavil domnevo, da lahko vsako naravno število večje od pet...

52 komentarjev

Najverjetneje odkrito štirideseto Mersennovo praštevilo

The inquirer -

Na spletni strani Mersenne.org, kjer se ukvarjajo z iskanjem Mersennovih praštevil na podoben način, kot delujeta SETI in Folding, so sporočili, da so včeraj zelo verjetno odkrili štirideseto t.i. Mersennovo praštevilo. Mersennova praštevila so podmnožica praštevil, ki se lahko vsa zapišejo v obliki 2n - 1.

Pred natanko dvema letoma so odkrili devetintrideseto Mersennovo praštevilo (213.466.917 - 1), po tem pa vse do zdaj nobenega, kar priča o redkosti teh števil in računski zahtevnosti postopka njihovega iskanja. Če je bilo štirideseto Mersennovo praštevilo res odkrito in katero je, bo znano v sredini decembra, ko bodo znani rezultati zadnjih testov. Če bodo testi potrdili domnevo, bo to največje znano praštevilo. Več o tovrstnih praštevilih pa si lahko preberete tudi v forumu, kjer se je prav o Mersennovih praštevilih pred dvema letoma razpisal kdo drug kot Thomas. [:D]

9 komentarjev