» »

Digitalna evolucija

Digitalna evolucija

««
26 / 29
»»

snow ::

Aha potem naklacimo tud vsa devetmestna stevila v ene 125Mb. :]

Sam kako je pa on tip 30 jih v 8bit dal?
Random mutation plus nonrandom cumulative natural selection - Richard Dawkins

snow ::

Aja mimogrede.. jaz sem registiral ze eno ekipo slo-tech ze za voting :] Se lahko kot tista predstavljamo.
Random mutation plus nonrandom cumulative natural selection - Richard Dawkins

Sergio ::

Shit. Ce so razlicna prastevila, potem je pa moja resitev popolnoma neuporabna.

Skoda. :/
Tako grem jaz, tako gre vsak, kdor čuti cilj v daljavi:
če usoda ustavi mu korak,
on se ji zoperstavi.

OwcA ::

Sam kako je pa on tip 30 jih v 8bit dal?

Lahko, da je napaka in misli na byte, ne bite. Ker tudi potem, ko govori o celotni velikosti so kilobiti rahlo nestandardna velikost. Ampak to je le in samo ugibanje.
Otroška radovednost - gonilo napredka.

Thomas ::

> Sam kako je pa on tip 30 jih v 8bit dal

Ne vem, če je on tako naredil, vendar da se dat prvih 30 praštevil v 8 bitov. Še manj. V bistvu lahko daš kar vsa praštevila v 0 bitov. Imaš pa dosti calculatinga potem, to pa ja.

Thomas ::

Čestitam snowu za drugo mesto na tekmovanju. Če smo pričakovali prvo, smo bili pač preoptimistični, vendar ne veliko. Je bil hudičevo dober!

ČESTITAM!

snow ::

Hehe je blo pa tole drugo mesto v PTSP dobra lekcija za naslednjic. Laufaj zadevo malo več kot dva dni (od dveh tednov). Mal pomanjkanje časa je blo... ampak sem se pa dost naučil zraven :)


Nič zdej se gremo fajtat na primes. A ne fantje?
cman že nekaj pridno evoluira. Jaz bom tud te dni najbrž nekaj skupaj spacal, pa gledal tja do stringov dolgih vključno 9.

A una koda ko sem jo prej dal za checker je kul? Al se da kje z kakim malim premikom dost optimizirat? (A job for critticall maybe?)
Random mutation plus nonrandom cumulative natural selection - Richard Dawkins

Zgodovina sprememb…

  • spremenil: Vesoljc ()

Vesoljc ::

srebro je tudi lepo :)
Abnormal behavior of abnormal brain makes me normal...

Thomas ::

Sem se odločil, da ZAGOTOVO ne bom sodeloval. Evoluiram pač druge reči.

Zato pa povem, kako bi se zadeve lotil jest. (Če mi ne bi vmes padlo na pamet kaj, za kar bi mislil, da je boljše.)

Evoluiral bi majhno zaplatico kvadratkov. Ko bi že X ur evolucija ne našla več izboljšave, bi zaplatici dodal nov kvadratek, evolucijo pa pustil od tam dalje. Etc.

Ljudje, sloni in kiti smo prišli iz enoceličarjev, remember? Evolucija je indirektna. ;)

snow ::

Reporti in rešitve iz PTSP: link

PDF od vsakega ki je reševal problem in slikice poti ki jih je postal.

Tale zmagovalni Martin, je mel nekega mentorja pri tem in mu je to del diplome. Hum :)

No jaz bi se tud moral zahvalit Thomasu za pomoč in za spodbujanje. Hvala! (Sicer bi blo lepše če bi blo v tistm pdfju to, ampak če pišeš zadnjo noč to, pol je to bol tak tak hehe).
Random mutation plus nonrandom cumulative natural selection - Richard Dawkins

snow ::

Haha. Gledam powerpoint za GECCO2005 iz tega tekmovanja.
Ubistvu je več slajdov(5 proti 4) moje metode reševanja kot pa od zmagovalca :)

http://cswww.essex.ac.uk/staff/sml/gecco/ptsp/tmp/PTSPCompetitionSession.ppt


Hm.. zdej sicer po toči zvonit je prepozno ampak:
Jaz bi moral tud tale prvi del bolj pametno napravit... in sicer bi moral upoštevat fiziko (računat neke delne hitrosti glede na kote in razdalje med mesti in končno tudi čase) ko bi iskal najboljšo pot med mesti in potem to dat drugemu delu za evoluirat.
Random mutation plus nonrandom cumulative natural selection - Richard Dawkins

Thomas ::

Uganke so dobra vaja za soočanje z realnimi problemi. Komaj kaj razlike na pogled. Včasih praktično nerazločljivo.

Kaj je razbijanje RSA - uganka ali problem? Težko rečt.

No ja, moj point je vseeno rahel apel za prehod na "problematično stran". Rahel, ker kot že rečeno, uganke so dobra vaja.

Problemi pa še boljša.

Kateri problem? Tisoč mi jih pride na misel. Recimo stelitska antena. Kakšna naj bo, da bo najboljš lovila?

Hja no ... mogoče rabiš superračunalnik. Seveda, da ga rabiš. Sej ga imaš, ampak iz leta 1990. Nekej je ...

nicnevem ::

Če se prav spomnim so pri NASA-i eno tako fino oddajno anteno že zevoluirali...nedavno tega. Besede enega glavnega inženirja (strokovnjaka za načrtovanje anten "na roke") so bile nekaj v smislu: "I would have never thought of that kind of design...!". Gospod je imel za sabo baje 20 let prakse samo v tem specifičnem področju, pa ga je inovativnost "preprostega računanja" vseeno osupnila.

Zanimivo, ni kaj! :)


P.s. Thomas dela tako reklamo za tale EA, da me že kaka dva mesca živcira, ker nisem mel časa, da bi vsaj začel glodati to področje...no, od dans naprej so počitnce. :))

P.s.s. aja, snow, čestitke za srebro! ..sm skoraj pozabil.

Zgodovina sprememb…

  • spremenilo: nicnevem ()

Thomas ::

Mislim, da bi lahko zevoluirali še MNOGO več anten. Tudi boljših, zagotovo pa bolj prilagojenih posameznim okoliščinam. Dolžini in moči valov, ki jih lovijo. Take bolj ozko usmerjene in take s spremenljivo obliko. Kar se anten tiče, smo rekli komaj A. Čeprav se v mobilcih ne poznajo več. Recimo.

Ampak dela za stroje je še za cel planet, medtem ko smo mi zgolj popraskali nekoliko po površini. Takorekoč.

Full swing EA - to hočem, to je moj cilj. :)

nicnevem ::

Kako zelo težko pa je napraviti tak software...recimo za evoluiranje anten, ko smo že ravno pri njih? Kolikor tako okvirno razumem princip, rabiš dobro fizikalno simulacijo (kot del fitnessa), da se ne razvije nekaj, kar je nemogoče realizirat....kar pa IMO ni ravno simpl, pa še CPU-ja požre ogromno.

> Full swing EA ..

..SAI? :)

Thomas ::

Samo ena fraza mi prihaja na misel - nespodobna. Zafukan je k' svina!,

Poleg tega je še izjemno varljivo. Ko že misliš da ti dela, ti v resnici dela nekoliko drugače.

Je pa seveda povsem v okviru možnega in mogočega in uporabnega.

> SAI?

Ja, neločljivo od SAI, pravzaprav.

Zgodovina sprememb…

  • spremenil: Thomas ()

nicnevem ::

> Zafukan je k' svina!

Aha, no saj...čisto trivialno tudi ne sme biti, da ni prehitro konec veselja. :)

Sicer pa takole na uč gotovo lažja pot kot nevronske mreže v povezavi z meni nerazumljivimi čudi, s katerimi hočejo Goertzel & co. načarati AGI. Pa ne da bi mel js kak tak (pre)ambiciozen načrt, sploh ne. Stvar je zanimiva in pomoje vredna ukvarjanja...čez čas, ko bo precesorska moč dovolj na široko na voljo, in morda kak inteligenten software, ki bo v neki meri zavtomatiziral pisanje evolucijskih algoritmov, zna biti fino, ko boš lahko na domači kišti zevoluiral nek produkt, ter ga s primerno (nano)tehnologijo tudi "spravil na svet".

Na tale site sm naletel pred kratkim...

..očitno se poleg že znanih junakov še nekateri pri nas matrajo z EA-jem. Še kak orenk cluster pa... :)

nicnevem ::

Aja, snow je dal en supr link (na Generation5), mogoče še kak nasvet oz. link za EA - poleg googla ?

snow ::

Gene expression programming
AI Junkie en lep uvod v genetske algoritme (hmm neki je v flashu pa mi ne odpre zadeve v firefoxu)
Genetic programming yahoo group - Sodelujejo/objavljajo gor dečkoti v stilu John Koza. Pa za tale moj PTSP sem našu gor.

Potem če si na Uni-Lj (najbrž tudi Uni-Mb) imaš dostop do raznih revij in journalov online. En tak zanimivih na to temo je IEEE Transactions on Evolutionary Computing.

evolutionary computation FAQ by comp.ai.genetic

Hmm mam ene slajde na disku, ampak ne vem več kje sem jih dobil(neka danska stran to vem...). Pa tud za slovake sem že zasledil da majo predavanja na to temo.

Aja bukve! :)
V CTK-ju najdeš od Goldmana pa od Michalewitza (tole sem ziher narobi napisal), pa tud kaj od Koze.


Need more?
Mam ene 300mb raznoraznih zadev na temo evolutionary computing na disku. Want a CD? :)
Random mutation plus nonrandom cumulative natural selection - Richard Dawkins

nicnevem ::

Hvala lepa, no. *bows* :)

> Need more?

Uhh...that will do...for now. :))


Ja no...še kak dan počitnic pol pa veselo na delo. :)

snow ::

Ha sem našel še eno tekmovanje.
V sklopu 2005 IEEE Congress on Evolutionary Computation, ki bo v Edinburghu (mi je bil všeč tisti grad tam gor, ko sem bil enkrat tam) poteka neke 5 tekmovanj ampak ne moreš zmagat če ne greš tja.

http://eldar.mathstat.uoguelph.ca/dashlock/CEC05/CECcontests2005.html

Predvsem mi je zanimivo "Binary Series Prediction Competition", ker vem da se je enkrat o tem že debatiralo na slo-techu (takrat ko sem bil še majhen in zelen.. em neumen), pa je Thomas mel enega predictorja :)
Bi se pa najbrž dala zadeva lepo s Critticallom izvest. Da naredi en lep predictor v C-ju! Sam pač škoda ker se ne da zmagat.

Se moram zelo strinjat s Thomasom, da so tekile problemi zelo dober trening, ki ti potem kasneje lahko pomagajo pri reševanju kakšnih realnih problemov. Oziroma si nek dejanski problem predstavljaš kot neko tekmovanje :)



No zadeve se počasi premikajo... sem ter tja tud pri nas nekaj začenjajo/začenjamo.


Aja Taychon.. mogoče najdeš tudi kaj pametnega na MIT Opencourseware strani.
Random mutation plus nonrandom cumulative natural selection - Richard Dawkins

snow ::

Sem modificiral (ubistvu samo spremenil nekaj cifer) en Critticall example: http://www.farma-drustvo.si/rok/binary.c

Če se da komu laufat zadevo :)
Pa recimo da je prav naštimano.
Random mutation plus nonrandom cumulative natural selection - Richard Dawkins

Gandalfar ::

Tegale jzt ne morem pod linuxom laufat ane? Das eno verzijo, ki jo bo gcc prebavil in jo lahko na linux masini furam?

snow ::

Hm to je Thomasov tool ubistvu, ta critticall.Mislim da ni linux izvedbe.

Ma to je blo sam tak mal mimgrede. Gruntamo primes naprej :)
Random mutation plus nonrandom cumulative natural selection - Richard Dawkins

snow ::

Če je mreža 19x19:

- dolžina stringa
- število takih stringov v 19x19 kvadratu
- sum

1 361 361
2 2664 3025
3 2448 5473
4 2240 7713
5 2040 9753
6 1848 11601
7 1664 13265
8 1488 14753
9 1320 16073
10 1160 17233
11 1008 18241
12 864 19105
13 728 19833
14 600 20433
15 480 20913
16 368 21281
17 264 21545
18 168 21713
19 80 21793

Zdej do vkjučno devetmestnih števil za testiranje na prime spravimo na simpl način v 125 mega rama. Če mamo kje kakega junaka z 10x več rama lahko da notri tudi desetmesta števila.

Prvo preverimo z tabelo vse cifre, potem pa recimo kako polovico najboljših pregledamo še za večja praštevila. Dost verjetno da tja nad ene 15 nima se kaj smisla trudit.

Zdej jaz bolj govorim kot kaj delam (no tabelo mam narejeno z Eratostenovim sitom, pa traja približno minuto da jo naredi), ampak čakam na točna navodila za tekmovanje, ker je on šefe tekmovanja dost gruntal še o velikosti (a 20x20 al 19x19), pa do katerih praštevil bomo sploh preverjali in podobno.
Random mutation plus nonrandom cumulative natural selection - Richard Dawkins

Thomas ::

What we are going to do, you may ask? Well, we shall squeeze THIS article, as much as it goes. In fact, we don't know how many bits are redundant there, and therefore prone to be cut off without any damage to the integrity of the data. Never the less, we can always sort out the best known compressing algorithm (for this article), by just counting the number of bits required for the compressed bit string. What algorithm(s) will we use? That's to be seen, we are going to evolve some! The survival fitness is the number of reduced bits. We are going down from 5000 bits in ASCII code to ... where? Let the Evolution begins!

snow ::

Zanimivo :)
Random mutation plus nonrandom cumulative natural selection - Richard Dawkins

Thomas ::

Sej v bistvu si me ti nekoliko inspiriral s svojimi udeleževanji tekem. Jest sem si tekmo določil pač sam. Počasi bom dajal (tukaj) gor številke, do kamor je zevoluiralo. Ko (če) bom prišel dovolj pod Winzip ali kaj podobnega, bom lansiral pa EXEteta.

snow ::

Moj CPU zaenkrat počiva in ti lahko kaj laufam gor.
Dokler ne gremo na ono tekmo s praštevili.

Se pravi ti ciljaš narediti en zelo dober - splošen kompres?
Vprašanje je tu tudi glede hitrosti. Faktor (reduction in size)/(cpu time) ali kaj podobnega.
Random mutation plus nonrandom cumulative natural selection - Richard Dawkins

Thomas ::

Ciljam samo na čimboljše kompresijsko razmerje. Zevoluiral bom program s samo tem fitnesom. Ta moment pišem (Critticall) kodo.

snow ::

A je že, a je že? :)

Ko človek odpiše zadnji izpit za letnik ima več časa za evolucijo :)
Random mutation plus nonrandom cumulative natural selection - Richard Dawkins

Zgodovina sprememb…

  • spremenilo: snow ()

Thomas ::

Ja, je že. Ampak trenutno ga ženem v kontra smer, da ga napihuje. Se pravi, da razvija algoritem za inflate, ki bo tistih "5000 poboldanih" bitov (625 bytov) napihnil na kakšnih 10000.

Potem ga bom obrnil in evoluiral tega, napihnjenega. Male tajne ....

:)

Vesoljc ::

vec prostora mu das?
Abnormal behavior of abnormal brain makes me normal...

Thomas ::

Ni razloga za domnevo, da je osnovno ASCII zapisovanje optimalno izhodišče, da se zevoluira kakšen dober kompres. Nasprotno! Bolj kosmate začetne konfiguracije imajo dober potencial, da standardno ASCII zapisovanje (8 bitov na znak), kar obidejo. Se pravi, pridejo podenj, kar se razsipnosti tiče.

snow ::

The contest will start Monday 4th of July !

Despite the fact that I worked hard since 2 weeks, I cannot start the
contest tomorrow as announced.
The code is finished but not fully tested.

I optimized the scorer so it runs within the time limit of 6 seconds
on a 20x20 grid, but with a limited Miller-Rabin algorithm.
It's possible that your score won't be accurate, but we'll
double-check all the best grids at the end of the contest.
This also means that ALL submitted grids will be stored.

The website of the contest is now http://www.recmath.org/contest/
You need to reenter your login/password, since the previous cookie was
on the contest.thebyrdnest.net domain.

Finally, we have changed the rules slightly so that the problem is
entirely new !

Jean-Charles


Miller-Rabin test v slovenščini.
Random mutation plus nonrandom cumulative natural selection - Richard Dawkins

snow ::

No pa se gremo ta naša praštevila: http://www.recmath.org/contest/

Od 3x3 do 19x19 se šteje in vsako praštevilo samo 1x! Gleda se vse možne smeri.

Zdej sta pa dva dela:
1) vsako praštevilo 1 točka
2) vsako praštevilo L točk (L=število cifer v praštevilu)


Mislim da se je treba na novo registrirat. Se gremo igrati kot slo-tech team?
Random mutation plus nonrandom cumulative natural selection - Richard Dawkins

Jst ::

Moja ponudba še vedno velja.

Prispevam CPU time. linux.


Mogoče bi uspel še na enemu dual xeon server win2003 laufat, s tem, da ima db server absolutno prioriteto. Če ti kaj pomeni MP. Sicer pa bi za HT (Hyper Threading) tudi bilo boljše pod določenimi pogoji.
Islam is not about "I'm right, you're wrong," but "I'm right, you're dead!"
-Wole Soyinka, Literature Nobelist
|-|-|-|-|Proton decay is a tax on existence.|-|-|-|-|

MaCoFaCo ::

Kako si si pa zamislil program? Brute force ali kaj bolj efektivnega?
Kolko si dosegel score za 3x3 matriko pri točkovanju A in koliko pri točkovanju B?
Za točkovanje A in B se uporabi ista matrika 3x3 ali za vsako točkovanje svoja?

MaCoFaCo ::

Ok, sm pogruntu :)

Škoda sam da mam tko švoh mašino :P

snow ::

Evolucijski algoritem bo gnal zadevo. Zdej pišem en solver. Zaenkrat se bomo skoncentrirali na praštevila do velikosti 9 - ki jih spravim v eno tabelo 120mb rama, pa bomo videli kje smo.

Bruteforce bi bil trajal predolgo že na kakem 6x6 kvadratu. Kje je šele 19x19!
Random mutation plus nonrandom cumulative natural selection - Richard Dawkins

CCfly ::

Delno offtopic, če bo koga zanimalo: http://www.kurzweilai.net/meme/frame.html?main=/articles/art0588.html

edit: strežnik očitno ni prestal slashdot efekta.
"My goodness, we forgot generics!" -- Danny Kalev

Zgodovina sprememb…

  • spremenilo: CCfly ()

snow ::

Kvadrate do velikosti 8 bom lepo prepisal z mathworlda in jih submital.

Mam neki mali solver. Na 4x4 mi najde optimalno rešitev, na 5x5 pa pride do 115 (optimum je 116).

Pa mal tud testiram zdele na 19x19 mreži... mi najde 1833 (trenutno) preštevil do vključno dolžine 9... ko submitam rezultat pa je 2147. Glede na score ocenjujem, da ima najboljši rezultat na 19x19 čez 3000.


Mogoče bi blo res pametno testirat mal z Miller-Rabinom. Sem gledal opis algoritma, ampak mi tisti modi in potenciranje ne gredo. Bi lahko kaka bolj matematična duša mi spisala to v c++?:\

bool MillerRabin(long long primecandidate)? :)
Random mutation plus nonrandom cumulative natural selection - Richard Dawkins

Thomas ::

Meni trenutno (ta moment) dela neka druga digitalna evolucija. Sedim v neki šoli in gledam, če se bo zevoluiral urnik. Ako ne, grem čez pol ure po ravnateljico in jo prosim za milejše pogoje. :)

OwcA ::

Kvadrate do velikosti 8 bom lepo prepisal z mathworlda in jih submital.

Na MW so vredu samo do 4, ti so tudi dokazano optimalne rešitve, naprej nimajo nujno najboljših poznanih rešitev.

Miller Rabin:

bool MillerRabin(long long n, long k = 1)
{
	int r = 1;	
	long long two_pow_r = 2; 
	while ((n % two_pow_r) == 1)
	{
		r++;
		two_pow_r *= 2;
	}
	int s = (n-1)/two_pow_r;
	srand(static_cast<unsigned int>(time(0)));
	for (; k > 0; k--)
	{
		long long a = static_cast<long long>(rand()/static_cast<double>(RAND_MAX)*(n-2))+1;
		if ((pow(a, s) % n) != 1)
		{
                        bool probably_prime = false;
                        // ce je vse skupaj prepocasno, namesto za vsak j preverimo samo za nekaj (poljubnih/nakljucnih) j
			for (int j = 0; j < r; j++)
			{
				if ((pow(a, pow(2, j)*s) % n) == -1)
				{
					probably_prime = true;
					break;
				}
			}
			if (!probably_prime)
			{
				return false;
			}
		}
	}
	return true;
}


Kar je potenciranja 2, bi se splačalo spremeniti v šiftanje.

Podatkovni tipi za s,r in j so morebiti rahlo preveč (r, j)/premalo (s) velikodušno odmerjeni.

Generiranje a-ja je grdo. Splačalo bi se vzeti kakšen drug (psevdo) random generator, takšen, ki vrača na intervalu [0, 1].
Otroška radovednost - gonilo napredka.

Zgodovina sprememb…

  • spremenilo: OwcA ()

JerKoJ ::

http://primes.utm.edu/curios/includes/file.php?file=primetest.html

tuki na strani mas javascript, ki preveri po MillerRabin testu do stevila 341.550.071.728.321
vendar ne rabi random "pric" pac pa testira za price 2,3,5,7,11,13,17 in je dokazano, da
mimo ne spusti nobenega sestavljenega stevila ce test uspe.
Verjetno se pred zacetkom vseen placa prevert deljivost z manjsimi prastevili, pa majhna prastevila
kar direkt prevert prek tabele.

Enga najd, ki ti bo to prestavu v c++.

snow ::

En primer 19x19 submita... iskanje praštevil dolžine do vključno 9. Se vidi da je tam na 10 rahel preskok ja :)

OwcA hvala za kodo, bom danes/jutri pregledal in inplementiral :)
S tem lahko testiram praštevila pač do velikosti long long?

2311 primes
4 primes with 1 digit: 2,3,5,7
21 primes with 2 digits: 11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97
128 primes with 3 digits: 101,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199,211,223,227,229,233,239,241,251,257,263,269,271,277,283,293,311,313,317,331,337,347,349,353,359,367,373,379,383,389,397,401,419,431,433,439,443,449,457,461,463,467,479,487,491,499,523,541,547,557,563,569,571,577,587,593,599,607,613,617,619,631,641,643,647,659,661,673,677,683,691,701,719,727,733,739,743,751,757,761,769,773,787,797,811,821,823,827,839,853,857,859,863,877,883,887,911,919,929,937,941,947,953,967,971,977,983,991,997
350 primes with 4 digits: 1013,1049,1117,1123,1129,1151,1153,1171,1187,1193,1213,1217,1223,1231,1237,1277,1279,1291,1303,1319,1321,1361,1367,1373,1399,1427,1429,1439,1471,1487,1493,1499,1511,1523,1543,1579,1613,1619,1621,1627,1637,1657,1667,1669,1693,1697,1699,1723,1733,1741,1759,1777,1789,1871,1877,1879,1913,1931,1933,1949,1951,1973,1979,1993,1997,1999,2011,2111,2113,2143,2161,2179,2239,2333,2339,2351,2371,2399,2417,2467,2477,2593,2617,2671,2693,2699,2719,2729,2731,2791,2851,2861,2897,2917,2939,2971,3119,3121,3137,3163,3169,3181,3187,3191,3209,3217,3221,3251,3259,3271,3313,3319,3329,3331,3347,3359,3361,3371,3373,3389,3391,3463,3467,3499,3511,3533,3539,3557,3559,3613,3617,3631,3637,3643,3677,3697,3701,3719,3727,3733,3769,3779,3793,3797,3823,3833,3877,3911,3919,3929,3931,3947,3967,4127,4133,4139,4253,4273,4297,4481,4517,4651,4663,4799,4817,4871,4919,4933,4987,4999,5113,5119,5171,5179,5189,5197,5231,5233,5387,5393,5399,5437,5479,5573,5639,5693,5717,5737,5791,5869,5939,5953,5981,6079,6113,6133,6199,6211,6257,6263,6311,6317,6337,6343,6361,6367,6373,6379,6397,6619,6637,6673,6719,6733,6791,6793,6827,6857,6871,6883,6911,6917,6947,6959,6961,6967,6971,6991,7013,7121,7127,7129,7151,7159,7177,7187,7211,7219,7229,7237,7243,7321,7333,7369,7393,7433,7457,7541,7547,7561,7573,7577,7589,7607,7621,7639,7643,7649,7699,7717,7741,7757,7789,7793,7817,7841,7873,7877,7879,7919,7933,7937,7963,7993,8167,8179,8231,8233,8273,8311,8317,8443,8467,8563,8693,8699,8713,8731,8737,8839,8867,8933,8971,9067,9109,9127,9133,9137,9151,9157,9161,9173,9181,9199,9227,9241,9277,9293,9311,9319,9337,9341,9349,9377,9391,9397,9439,9467,9473,9479,9491,9533,9539,9587,9613,9619,9629,9631,9661,9677,9679,9697,9721,9733,9749,9769,9781,9787,9791,9833,9839,9857,9871,9887,9929,9931,9941,9949,9967,9973
418 primes with 5 digits: 10139,10259,10733,11113,11117,11119,11273,11383,11393,11437,11519,11579,11717,11777,11939,11969,11971,12239,12671,12739,12799,12983,13093,13177,13187,13331,13337,13399,13463,13477,13619,13633,13679,13721,13751,13879,13913,13931,13933,13967,13997,13999,14489,14713,14771,14939,15137,15199,15731,15823,15991,16193,16339,16361,16673,16921,16963,16987,17117,17321,17333,17341,17419,17713,17729,17737,17791,17827,17863,17911,17923,17987,18199,18379,18439,18443,18973,19163,19219,19697,19699,19717,19919,19937,19949,19993,20959,21013,21139,21767,21977,21991,23339,24133,24179,24671,25189,26113,26161,26717,27541,27763,29147,29173,29311,29399,29717,29833,29917,30937,31151,31193,31333,31391,31393,31741,31771,32117,32143,32173,32611,32719,32839,32971,33119,33161,33191,33199,33211,33317,33329,33331,33377,33427,33637,33769,33791,33931,33937,33961,34123,34273,34361,34631,35117,35393,35437,35573,35797,35977,35999,36191,36319,36793,36871,37013,37123,37159,37181,37217,37243,37339,37361,37379,37547,37579,37607,37693,37717,37879,37897,37993,38791,38867,38921,38933,38977,39113,39139,39157,39161,39163,39217,39313,39317,39659,39679,39733,39839,39877,39937,39979,41333,41761,41813,43711,44819,47137,47777,47791,47969,47977,48197,48781,49367,49831,49871,49999,51973,53791,54371,55733,56171,57373,58231,58699,59023,59119,59539,60637,60793,60901,61333,61339,61363,61627,61781,61879,61933,61949,61991,62303,62639,62791,62971,63113,63197,63199,63377,63617,63737,66191,66739,66959,67121,67129,67211,67339,67399,67511,67733,67961,67993,68917,69067,69119,69337,69661,69929,69991,71129,71153,71171,71293,71333,71389,71399,71593,71693,71711,71719,71843,72101,72493,72871,72931,73133,73331,73351,73363,73453,73721,73757,73771,73819,74149,74311,74573,74887,74933,75193,75269,75391,75479,75617,75869,76079,76493,76831,76883,76991,77137,77431,77573,77699,77711,77713,77731,77743,77797,77813,77893,77983,78167,78179,78311,78737,78791,78797,79139,79193,79241,79337,79367,79399,79691,79697,79777,79813,79873,79939,79987,80147,81157,81637,81671,81931,81971,82351,83311,84731,85639,86179,87317,87641,87869,87977,89393,89963,90239,90313,90679,91151,91199,91291,91331,91367,91369,91393,91573,91591,91631,91733,91771,91837,92333,92413,92693,93131,93139,93199,93319,93383,93481,93559,93893,93911,93913,93941,93997,95233,95539,95717,96179,96199,96857,96911,97127,97159,97169,97171,97187,97369,97373,97381,97511,97561,97609,97777,98317,98713,98737,99119,99133,99137,99139,99181,99191,99259,99317,99377,99391,99397,99439,99721,99733,99961,99991
362 primes with 6 digits: 101279,111119,111127,113467,113797,113933,114371,115363,116719,117773,117841,119227,119699,119797,119993,122399,127763,131771,132851,133337,133873,134777,136337,136403,136999,137279,137519,139313,139333,139339,139991,144899,147137,148711,148781,149399,151717,153379,154321,158231,159119,161233,161333,161363,161627,161983,163613,166739,166967,167197,169217,169471,169991,172871,175939,176713,177131,177787,179119,179233,179269,187129,191339,191669,193139,193393,193559,193573,193957,193993,195193,196279,196993,197269,197339,197369,197573,197713,197831,197971,199357,199721,199931,199961,210139,217333,217859,217969,219787,219911,230311,232433,241333,246637,259321,259937,261619,267961,277639,279913,291191,304631,310127,310733,311111,313333,313399,313777,313931,316133,316193,317419,317671,317987,319133,319313,319399,319937,321619,321631,321733,321991,326113,328519,329717,331613,331997,332117,332161,333161,333427,333701,336871,337013,337339,338731,339137,339161,339617,339839,344819,349967,351919,354371,360637,361919,363161,363199,363967,367721,369751,371843,371929,372121,372179,373757,374887,375391,376931,377711,378997,379157,379177,379399,379777,379931,381637,382351,387781,389161,389773,391133,391393,391613,393721,399389,399391,399691,399727,399911,417671,427541,433393,437159,443347,465151,479939,487111,488797,493993,497993,513319,519359,519733,529933,532163,535573,539111,539159,539311,557339,559939,564617,571973,577177,579637,585383,607931,613633,619331,619831,629711,631613,631619,631993,636133,637379,639679,649799,649871,659539,660901,664253,669673,673921,673991,675113,693373,697127,697511,697693,699151,699953,712961,713891,715991,716827,716987,717151,717593,717923,718453,719297,721013,721111,721139,726917,731333,731741,731767,731933,731999,733331,733639,733937,733963,736063,737981,739031,739217,739337,739777,752699,758699,761113,761879,769319,769661,769943,771973,773363,774149,777137,777313,777431,777743,779377,779731,779939,783119,787771,789391,789713,791573,791933,792413,793379,796379,797311,797539,797911,799873,817321,823519,831217,833719,833947,839161,878413,886793,897373,911111,911951,911969,912631,913637,913933,913999,914713,915731,915911,916999,917237,917611,917713,918173,918443,919153,919757,929381,929399,931127,931487,931639,933259,933329,933931,935999,937661,938233,939299,951331,955391,961991,962791,962971,965953,966191,967129,971273,971389,971693,973397,975869,976883,983179,983371,983993,991723,991817,993199,993779,993893,993913,993997,995173,995539,996257,996857,997273,998737,999631
295 primes with 7 digits: 1136123,1137977,1139353,1162303,1173631,1177733,1193573,1193693,1195193,1197187,1197971,1199123,1199491,1234517,1235137,1239523,1273771,1273933,1291471,1303261,1331599,1338731,1346311,1364039,1372799,1374887,1389473,1395179,1399733,1519967,1579637,1599181,1619831,1634341,1671977,1713997,1734533,1749611,1767137,1773721,1773977,1777879,1797911,1798739,1933931,1935599,1939571,1939939,1949911,1971427,1993163,1999513,1999619,2161933,2163113,2163613,2169631,2173333,2178271,2199961,2303117,2310733,2315231,2477333,2616199,2679619,2731111,2739337,2754127,2799133,2931127,2938163,2939977,3032611,3101279,3107333,3119797,3133337,3159991,3169217,3179873,3189737,3247171,3313777,3316361,3329717,3331997,3334273,3337013,3337123,3339317,3344819,3354371,3379177,3387317,3393721,3394799,3398399,3399259,3511777,3539311,3557339,3599963,3613991,3619199,3636799,3643181,3693373,3697511,3711233,3715991,3718439,3721217,3724333,3733963,3737579,3748879,3789713,3791933,3819313,3831119,3877813,3897739,3911111,3916343,3918379,3921769,3929917,3976319,3980147,3991369,3991399,3993779,3993893,3996911,3997339,3997493,4176187,4179139,4273151,4341049,4379987,4533931,4717151,4777793,4819783,4887977,4916371,4919153,4939939,4999913,5113477,5117773,5137243,5328391,5339311,5355733,5359819,5393111,5467229,5679131,5917741,5981971,6161993,6177293,6183929,6193823,6198317,6230311,6311623,6367993,6397631,6425359,6609019,6649871,6739913,6785893,6878891,6936337,6991363,6999539,7111127,7112983,7115363,7127311,7137833,7154321,7173619,7177397,7179233,7243339,7273177,7317671,7361839,7369751,7378997,7381931,7397777,7414999,7431157,7488797,7498319,7511347,7579193,7593913,7611139,7636351,7671373,7693633,7737211,7773133,7775737,7778791,7779377,7791761,7797311,7811579,7869067,7884731,7894669,7930463,7937717,7969121,7975399,7978847,7979113,7993171,8193139,8217827,8311991,8319313,8358563,8441767,8571973,8633423,8637379,8737577,8778131,8835481,8878693,8934817,8997341,9031339,9113879,9119519,9119699,9136793,9138947,9139313,9147137,9151717,9158231,9159119,9163717,9166967,9184433,9197369,9217811,9241333,9311167,9332593,9337553,9338311,9355993,9361399,9363377,9376079,9395717,9399139,9399749,9427541,9477917,9519359,9637919,9687889,9715931,9721013,9733513,9741089,9745739,9758699,9768839,9773993,9788473,9815203,9913637,9917711,9931639,9935797,9937607,9939733,9963199,9967129,9972101,9974933
209 primes with 8 digits: 11113721,11303261,11437159,11936933,11971871,12127393,12395233,12799133,12983371,13032611,13191331,13399259,13612351,13748879,13933919,13997339,14343619,14489963,15156461,15363679,15796379,15991817,16465151,16696733,16976263,17360639,17593913,17621171,17671373,17711999,17778791,17979113,19153283,19194991,19355993,19382351,19627913,19887869,19949191,21174961,21733331,21781157,21785917,23107333,23718439,26796191,29119169,29147137,31012799,31136123,31533791,31771973,31897373,31913197,32117363,32161933,32163113,32199113,33119369,33199721,33259321,33342731,33639679,33733963,33916123,34341049,34777793,35797873,36267961,36316193,36371123,36585383,37112333,37339639,37379813,37488797,37498319,37519733,37547977,37579193,37696619,37879753,38163731,38311193,38977399,39111113,39113387,39139339,39159119,39161233,39161363,39197573,39335437,39337553,39372121,39479939,39659539,39679697,39801479,39939139,39969119,39972731,39991177,41089393,41333701,42535981,44819783,45339311,46311623,47171519,47319331,47993993,48172871,51177733,51364039,51919499,53524663,59119699,61136431,61333177,61711267,61713997,61993163,62679619,63025189,63711233,66959023,67121273,67961911,69319399,69399139,69631613,69769363,71129833,71171791,71239523,71361919,71682731,72113927,72163613,72616199,72731777,73393721,73396391,73771333,73789973,73903133,73921769,74983193,75193823,76831217,77197339,77399389,77414999,77974573,78131393,78797539,79113467,79269361,79619119,79777573,79935797,79939939,81157963,81520367,83394799,83585639,85639427,87111127,87154321,88354817,88473193,91133873,91669673,91761113,91991699,91991771,92176991,92413337,92938163,92996257,93111671,93316361,93383111,93393193,93599963,93606371,93613991,93929917,93993973,93996911,94014343,96379193,96391133,96712937,97168273,97273177,97369751,97373687,97539979,97636351,97877713,98399377,98737577,98878693,99113879,99177119,99399749,99951331
174 primes with 9 digits: 110259937,111193987,111671977,113939801,117363199,117733631,119166967,127991333,129833719,130326113,133191319,133337123,134123243,136793677,137243339,137286179,137361839,139991177,144899633,151372433,159310127,163962971,171399733,173333137,173389211,173453393,176111393,177119993,178179119,179139313,181736063,193139183,193823519,193957171,199931993,216193319,216361339,217811579,217859177,219996199,231073331,232433687,261619931,278637379,304631533,311273771,311623031,313187783,313931971,316133317,317894669,317987399,333199721,333371239,334273151,336871543,339161233,341232433,345178633,360637181,361935599,363511777,363711233,363967969,371599181,371762117,371819951,372113927,378331193,378971389,381931391,388679377,391389473,391612339,393111671,393334273,393721217,396391133,399161627,414999913,417618791,477917611,479939939,487111127,511871299,513728617,519359569,532163113,535246637,538778131,539197573,582310733,591196993,591774149,617817911,667390313,671213867,675113477,679619119,711267173,711298337,713331613,715199671,717739777,717918953,729311273,731741921,733331377,737713331,739031339,759391393,769661911,771199931,771333161,775737899,777313333,777793771,777879127,785893481,787975399,789391111,793379177,797539979,831119357,831931391,833119369,833947993,839161363,844176713,863737981,878413967,879753997,886793779,891090661,893911111,911138339,913315999,913748879,913933919,916696733,917611139,918443347,919153283,919339319,929917237,930463153,933259321,933733963,933931939,935797873,936267961,936337769,938163731,938235191,939111113,939139339,939139673,939939733,939974933,947112983,949163717,967733639,969119519,969769363,971273111,971682731,977774311,983193139,992939977,993313093,993929917,995173411,996319937,999941477
85 primes with 10 digits: 1111137217,1111939877,1162303117,1331913197,1339161233,1393131877,1477195871,1591196993,1613633771,1715199671,1792693613,1991138791,1991916317,1999319939,1999513319,2197877713,2239976363,2351919499,2417913931,2467121273,2471715199,2693613991,2731111193,2731777879,2938163731,3217333313,3247171519,3344819783,3371239523,3373396391,3391374887,3393721217,3398399377,3712395233,3789713891,3877813139,3997636351,4149999137,4253598197,4275412759,5191949911,5387781313,5721457249,6336998441,6425359819,6617139973,6717361949,6998441767,7121273933,7249365853,7249815203,7315321631,7366425359,7378997341,7393321619,7414999913,7519733513,7711536367,7777431157,7918443347,7926936139,7930463153,7993993913,8339617973,8354817287,9113387317,9138947371,9176111393,9181736063,9193393193,9332593217,9337696619,9357978737,9479939939,9639113387,9659539159,9691195193,9751187129,9773993893,9831931391,9911971871,9976363511,9991177199,9991197187,9995133191
75 primes with 11 digits: 11111372179,11167197749,13619199169,14371599181,17175939139,17345339311,17593913933,17621171657,17729311273,17817911999,19169762639,19996199191,20959664987,21696316133,21781157963,24981520367,27863737981,29933130937,32593217333,33371239523,33931939571,33947993993,35191949911,37519733513,37539111383,38311193573,38339617973,39138947371,39161363377,39332161933,41232433687,41493993973,43715991817,49163717621,51331913197,53598197171,57339372121,57963791933,59177414999,61983179873,63161333177,66739031339,67229119169,73351364039,73697511871,73749831931,73787975399,73933216193,75193823519,76431197971,77115363679,77372113927,77917611139,77978847319,78777137279,79241333701,79304631533,79939939139,81313931971,81346311623,89535246637,89737368727,91374887977,91817360639,91933931939,92199961991,93046315337,93163962971,94147719587,96391133873,96595391591,97884731933,97993579787,98317987399,99316396297
55 primes with 12 digits: 102599378971,123513728617,126717361949,129833719297,136191991699,143715991817,148711112761,171126717361,189737368727,193139138947,197187164651,199316396297,241791393131,246712127393,272197877713,311167197749,335393111671,389211749611,391374887977,437998737577,491915328391,511347777937,519382351919,536367993221,538778131393,572145724981,577177397777,619831798739,631613331773,693193993997,699151717423,724333931719,734533931113,751134777793,753911138339,769319399399,774149999137,779176111393,786334232143,792413337013,798739952011,833119369337,833947993993,873757779731,917175939139,917741499991,933216193319,933259321733,939939139673,939969119519,952993313093,961991916317,971273111119,983193139183,997636351177
50 primes with 13 digits: 1102599378971,1129833719297,1134777793771,1379777573789,1434361935599,1599181736063,1713933342731,1774149999137,1894275412759,2399763635117,2535981971711,2599378971389,2721978777137,2911916976263,3111393354371,3179873995201,3369984417671,3393193957171,3463116230311,3606371819951,4253598197171,5387781313931,5391113833961,5646178179119,5931012799133,6090198878693,7137833119369,7169338311193,7336316193823,7338921174961,7399136999539,7433448197831,7636351177733,7711999319939,7717739777743,7731333371239,7789391111137,7859177414999,7894669590239,7917611139353,7929173389211,7969769363377,9158231073331,9272197877713,9291733892117,9321733331377,9491915328391,9631613331773,9639113387317,9758699136371
22 primes with 14 digits: 15991817360639,17811579637919,19949191532839,21781157963791,21785917741499,32433687154321,32839161363377,33283916136337,33777115363679,34517863342321,37971693383111,46315337915731,49191532839157,69471129833719,71593101279913,73199994147719,76493209596649,78115796379193,79131913315999,93217333313777,94916371762117,97159310127991
20 primes with 15 digits: 116609019887869,122399763635117,171126717361949,171759391393391,219996199191631,239976363511777,241333701328519,321173631996857,339639113387317,359996319937607,583328391613633,593217333313777,673921769915171,716827315321631,733963911338731,739332161933191,763025189427541,939955391634341,968788910906611,976936337769943
26 primes with 16 digits: 1177336316193823,1361235137286179,1397067399136999,1973697511871299,2399763635117773,2776397631978167,3219911387918443,3753911138339617,4176187913679367,5193823519194991,6791319133159991,7179189535246637,7374983193139183,7539111383396179,7586991363711233,7649320959664987,8134631162303117,8467526992938163,9193393193957171,9349967733639679,9391111137217969,9477917611139353,9697127311111939,9831798739952011,9921781157963791,9949191532839157
10 primes with 17 digits: 32199113879184433,37519733513640397,49320959664987137,53911138339617973,56791319133159991,66425359819717117,69471129833719297,78591774149999137,97273177787912729,97381931391389473
4 primes with 18 digits: 137519733513640397,169471129833719297,693991399911771991,846752699293816373
3 primes with 19 digits: 1223997636351177733,7363369984417671373,7789391111137217969
85 even digits
Score for part 1: 2311
Score for part 2: 15788
Elapsed time: 2.1975150108337 seconds
This grid improves your score on the grid 19*19 for part 1 from 2165 to 2311 points
This grid improves your score on the grid 19*19 for part 2 from 14662 to 15788 points
Random mutation plus nonrandom cumulative natural selection - Richard Dawkins

Phil ::

Kako submitaš matriko? V kakšni obliki?
Se moram kasneje prijavit....
LP

OwcA ::

Ena manjša bedarija je bila v moji kodi, sem popravil.
Otroška radovednost - gonilo napredka.

OwcA ::

Pravzaprav je stvar resno narobe, samo malo ...
Otroška radovednost - gonilo napredka.

OwcA ::

Sedaj je pa res vredu (ne znam negirati logičnih izjav :8)).
Otroška radovednost - gonilo napredka.
««
26 / 29
»»


Vredno ogleda ...

TemaSporočilaOglediZadnje sporočilo
TemaSporočilaOglediZadnje sporočilo
»

Najhitrejši programski jezik? (strani: 1 2 )

Oddelek: Programiranje
757652 (5472) Senitel
»

Funkcija z logičnimi operaterji.... (strani: 1 2 )

Oddelek: Programiranje
905424 (4770) CaqKa
»

Petaflopsu naproti (strani: 1 2 3 )

Oddelek: Novice / Procesorji
1058674 (8674) Marjan
»

cene permutacij help please

Oddelek: Programiranje
262044 (1651) Sergio
»

kako definirtati prastevilo

Oddelek: Programiranje
143763 (3568) ooux

Več podobnih tem