Spoj strojnega učenja in robotike pospešuje raziskovanje materialov
Berkeley AI Lab
vir: NatureNature - V Googlovem oddelku DeepMind so razvili nov algoritem za iskanje stabilnih anorganskih spojin GNoME, katerega rezultate so uspešno uporabili v robotiziranem kemijskem laboratoriju.
Čeprav so med strojno učenimi algoritmi po javni razvpitosti trenutno na prvem mestu generatorji slik in besedil, pa si od strojne inteligence potencialno še več prelomnih odkritij obetamo v naravoslovnih raziskavah ter inženiringu. Za pokušino smo zadnji dve leti lahko opazovali preboj v raziskovanju beljakovin, ki ga je prinesel DeepMindov algoritem AlphaFold, sedaj pa so na redu še anorganske snovi. Tudi stabilnost anorganskih kristalnih struktur se trudimo že dolgo časa raziskovati računsko, oziroma z računalniškimi simulacijami. Skladno z napredkom polprevodnikov in algoritmov je tovrsten trud v zadnjem desetletju zabeležil zaznaven pospešek in v vodilnih bazah podatkov danes najdemo okoli 50.000 "izračunanih" takšnih spojin, za katere znanstveniki menijo, da so stabilne. Toda to je še vedno zgolj...
Čeprav so med strojno učenimi algoritmi po javni razvpitosti trenutno na prvem mestu generatorji slik in besedil, pa si od strojne inteligence potencialno še več prelomnih odkritij obetamo v naravoslovnih raziskavah ter inženiringu. Za pokušino smo zadnji dve leti lahko opazovali preboj v raziskovanju beljakovin, ki ga je prinesel DeepMindov algoritem AlphaFold, sedaj pa so na redu še anorganske snovi. Tudi stabilnost anorganskih kristalnih struktur se trudimo že dolgo časa raziskovati računsko, oziroma z računalniškimi simulacijami. Skladno z napredkom polprevodnikov in algoritmov je tovrsten trud v zadnjem desetletju zabeležil zaznaven pospešek in v vodilnih bazah podatkov danes najdemo okoli 50.000 "izračunanih" takšnih spojin, za katere znanstveniki menijo, da so stabilne. Toda to je še vedno zgolj...