»

Po 65 letih rešen Erdősov problem

Nets Hawk Katz

Slo-Tech - Leta 1946 je madžarski matematik Paul Erdős postavil znamenit problem v diskretni geometriji, ki se imenuje problem števila različnih razdalj med n točkami v ravnini. Problem vprašuje, najmanj koliko različnih razdalj obstoji med n točkami v evklidski ravnini. Erdős je predpostavil, da je spodnja meja

g(n)=\Omega\left(n^{\frac{1}{2}}\right) (napaka se odpravlja).

Skozi leta se je spodnja meja pomikala više, nazadnje do n0,8641, točne vrednosti pa ni poznal nihče. Sedaj sta problem rešila Nets Hawk Katz z Indiana University College of Arts and Sciences in Larry Guth z Institute for Advanced Study v Princetonu. Dokazala sta, da ne glede na postavitev točk med n točkami moremo vedno...

22 komentarjev