Napredki v razvoju superprevodnikov

Matej Huš

23. feb 2012 ob 17:43:21

Lani je učinek superprevodnosti praznoval sto let, a do danes še nismo našli materialov, ki bi imeli to lastnosti pri temperaturah, ki so vsaj blizu sobni. Pravzaprav nismo uspeli dokazati niti ali tovrstni materiali zagotovo obstajajo ali zagotovo ne. Toda razvoj je vseeno prinesel precej novih spoznanj in materialov.

Superprevodniki so materiali, ki imajo električno upornost enako nič. Pri dovolj nizkih temperaturah ima takšno lastnost precej spojin, a se z naraščanjem temperature zelo hitro uniči. Načeloma jih lahko po kritični temperaturi, torej najvišji temperaturi, kjer še izkazujejo superprevodnost, razdelimo na nizkotemperaturne in visokotemperaturne superprevodnike - ločnica med njimi je vrelišče tekočega dušika pri -196 °C, saj je to najnižja zelo enostavno dosegljiva temperatura.

Konvencionalne superprevodnike imenujemo tiste, katerih vedenje pojasnjuje teorija BCS (Bardeen, Cooper in Schrieffer) o kondenzaciji elektronskih parov v stanje, podobno bozonom (elektroni so sicer fermioni!). Najvišjo kritično temperaturi med temi ima magnezijev diborid z -234 °C. Precej bolj zanimivi so nekonvencionalni superprevodniki, ki imajo precej višje kritične temperature. Leta 1986 so odkrili kupratne (baker vsebujoče) superprevodnike, med katerimi ima rekorder kritično temperaturo pri -138 °C. Do sobne temperature je torej še dolga pot, a smo se ji približali že več kot na polovico.

Leta 2008 pa so odkrili novo vrsto nekonvencionalnih superprevodnikov, ki se imenuje železovi halkogenidni superprevodniki, ker v njih med drugimi elementi nastopata železo in selen. Zanimivi so, ker se v vrsti lastnosti razlikujejo od vseh ostalih superprevodnikov. Za razliko od ostalih so močno magnetni, medtem ko pri ostalih močno magnetno polje superprevodnost uniči. Razlage za obnašanje halkogenidnih superprevodnikov še ni.

Poleg temperature na superprevodnost vpliva tudi tlak, ki nad določeno vrednostjo uniči superprevodnost. Čeprav tlak ne spremeni bistveno kemične zgradbe materiala,, vpliva na pojav. Znanstveniki so sedaj odkrili nove materiale z nestehiometrično sestavo (Tl0.6Rb0.4Fe1.67Se2, K0.8Fe1.7Se2, in K0.8Fe1.78Se2), v katerih se z zvišanjem tlaka superprevodnost ne zmanjšuje predvidljivo. Omenjeni materiali imajo sicer nizke že kritične temperature same po sebi (okrog -240 °C), a se z višanjem tlaka dogajajo zanimive stvari. Najprej superprevodnost upada, pri okoli 100.000 atmosferah izgine in se nenadoma ponovno pojavi pri 130.000 atmosferah. Zanimivo je, da se pri tem tlaku kritična temperatura pomakne k višjim vrednostim okoli -225 °C (kritična temperatura in tlak sta povezana, saj je mogoče narisati fazni diagram superprevodnosti).

Omenjeno obnašanje ni bilo opaženo še pri nobenem drugem materialu, saj povsod z naraščanjem tlaka prevodnost monotono upada. Ker je že sam vzrok za nastanek superprevodnosti v železovih halkogenidih slabo poznan, avtorji ne špekulirajo o razlagi zanimive tlačne odvisnosti. Članek je objavljen v Nature.