Po 65 letih rešen Erdsov problem
Matej Huš
26. feb 2011 ob 20:02:52
Leta 1946 je madžarski matematik Paul Erdős postavil znamenit problem v diskretni geometriji, ki se imenuje problem števila različnih razdalj med n točkami v ravnini. Problem vprašuje, najmanj koliko različnih razdalj obstoji med n točkami v evklidski ravnini. Erdős je predpostavil, da je spodnja meja
g(n)=\Omega\left(n^{\frac{1}{2}}\right) (napaka se odpravlja).
Skozi leta se je spodnja meja pomikala više, nazadnje do n0,8641, točne vrednosti pa ni poznal nihče. Sedaj sta problem rešila Nets Hawk Katz z Indiana University College of Arts and Sciences in Larry Guth z Institute for Advanced Study v Princetonu. Dokazala sta, da ne glede na postavitev točk med n točkami moremo vedno najti vsaj
C\frac{n}{\log{n}} (napaka se odpravlja)
različnih razdalj. Rešitev, za katero sta morala uporabiti tudi algebraične metode in rezultate iz topologije, problem preformulirati in uporabiti izrek o sendviču, sta objavila v članku On the Erdős distinct distance problem in the plane.
Za problem je Erdős leta 1946 razpisal nagrado 500 dolarjev (danes je to ekvivalentno 4300 evrom), ki je doslej ni prejel še nihče. Matematika bosta za svoje delo prejela 250 dolarjev nagrade, saj njuna rešitev ni povsem optimalna, ker vsebuje logaritme.